

Instrument Design for DESpec

D. L. DePoy Texas A&M University

May 30, 2012

History

- DESpec began as a notion
 - Could we modify DECam infrastructure to accommodate a spectroscopic survey?
 - Possible?
 - Inexpensive
 - Would the enabled spectroscopic survey be scientifically interesting?
 - Meaningfully increase DE parameter precision?

Answers seem to be positive

- Can reconfigure DECam to allow for spectroscopic option
 - Additional optics
 - Fiber positioner/spectrographs
- Use a large fraction of existing DECam infrastructure
 - Corrector optics
 - Structure (cage, etc.)
 - Hexapod
- Cost is not prohibitive

Answers seem to be positive

- DE parameter precision could increase substantially
 - Factors of many
 - Many talks and lots of discussion about what "many" means
- Additional science enabled
 - Talks and discussion of this as well

Many options remain available

- Specific starting point of discussion
 - 500 1000nm coverage
 - Resolution of ~3000
 - ~4000 targetable fibers
 - ~3 square-degree field-of-view
- Guidelines, not specifications
 - Other choices are possible
 - Some are more difficult/expensive than others
- Need to transition to science-based decisions abot instrumentation

Example: specific red cutoff

- Can use existing corrector to ~1050 nm
 - Can use simultaneously from 500-1050 nm
- Beyond ~940 nm
 - Throughput falls quickly
 - Sky becomes brighter
 - Water absorption
- Note: [OII] 372.7 nm at z=1.5 is at 931.75 nm
- Need to assess the importance of observing at wavelengths longer than ~940 nm

Example: Blue spectra

- DECam optics make good images over any ~200 nm wavelength range from ~350 nm to ~1050 nm
 - In the red the accessible range is larger
 - Blue observations are possible
 - 350-550 nm, for example
- Complications
 - Focus position different
 - Fiber material different
 - ADC more important
- Need to understand utility and added science

Quantitative discussion of added science capability

- Quantitative gain versus added capability is crucial for future instrumentation decisions
 - Ideally want something like "FOM vs red cutoff"
- Allows for examination of instrumentation designs and cost
- As a group we could then discuss "cost versus benefit" trade-offs

Some things are easy to change; others hard (= costly)

- Resolution
 - 1000-5000 possible
 - >10000 is difficult
- Field-of-view
 - ~3 square degrees possible
 - More is difficult
- Wavelength range
 - ~550-1050 nm possible
 - Reduction within this range easy
 - Anything else is difficult
- Etc.
- But nothing is impossible